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Elon Musk
“With Artificial Intelligence, we are summoning the demon”

Andrew Ng
“Fearing a rise of killer robots is like worrying about overpopulation on
Mars”

Geoffrey Hinton
“Whether or not it turns out to be a good thing depends entirely on the
social system, and doesn’t depend at all on the technology.”
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Machine learning emerged from AI - build a computer system that automatically improves with

experience

- application requires pattern recognition in large data

- application is too complex for a manually designed algorithm

- application needs to customize its operational environment after it is fielded

Mitchell’s well-posed learning problem
A computer program is said to learn from experience E with respect to some task T and some
performance measure P , if its performance on T , as measured by P , improves with experience E

Historically, ML is “just” part of the industrial age’s efforts towards perfecting task automation
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Software 2.0
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Software 1.0 involves manually writing rules. Software 2.0 is about learning these rules from data (credit:
S. Charrington)

Andrej Karpathy

“they [neural networks] represent the beginning of a fundamental shift in how we write software.”
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Software 1.0
- each line 1-17 produce a behavior (do this, then this ...)
- utilizes a programming language, e.g., Python, C++
- human-friendly code

SLIDE 9 IN 44

AARHUS
UNIVERSITY
CENTER FOR HUMANITIES COMPUTING



Software 2.0
- specify some goal on the behavior and write a solution architecture
- search and optimization problem
- abstract weights in a neural network
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Computational unit for learning

A neuron takes inputs, x1 , x2 , does some math on them, and generates an output, y

The input is weighted

x1 → x1 × w1

x2 → x2 × w2

then added with a bias
(x1 × w1) + (x2 × w2) + b

and finally passed through an activation function

y = f(x1 × w1 + x2 × w2 + b)
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Algorithmic Learning
a Loss Functionmaps the models output onto the “loss” associated with a prediction

MSE =
1

n

n∑
i=1

(ytrue − ypred)
2

GOAL: minimize loss of the network; the loss is a function of weights w and biases b. for a fully connected
one-layered feedforward network (2× 2× 1) then:

L(w1, w2, w3, w4, w5, w6, b1, b2, b3)

modifying w1 then, will change L as ∂L
∂w1

. using the chain rule:

∂L

∂w1
=

∂L

∂ypred
×

∂ypred

∂w1

assume a simple binary classifier, True : 1,MSE = (1− ypred)
2 , then:

∂L

∂ypred
=

∂(1− ypred)
2

∂ypred
= −2(1− ypred)
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For
∂ypred

w1
, let h1, h2, o1 be the output of the neurons they represent, then:

ypred = o1 = f(w5h1 + w6h2 + b3)

where f is the sigmoid activation function.
Because w1 only modulates h1 and not h2 :

∂ypred

w1
=

∂ypred

∂h1
×

∂h1

∂w1

and with the chain rule:

∂ypred

∂h1
= w5 × f ′(w5h1 + w6h2 + b3)

Repeat procedure for ∂h1
∂w1

:

h1 = f(w1x1 + w2x2 + b1)

∂h1

∂w1
= x1 × f ′(w1x1 + w2x2 + b1)

SLIDE 14 IN 44

AARHUS
UNIVERSITY
CENTER FOR HUMANITIES COMPUTING



Compute the derivative of the sigmoid function:

f(x) =
1

1 + e−x

f ′(x) =
e−x

(1 + e−x)2
= f(x)× (1− f(x))

Put it all together and we can compute:

∂L

∂w1
=

∂L

∂ypred
×

∂ypred

∂h1
×

∂h1

∂w1

as:

−2(1− ypred)× w5 × f ′(w5h1 + w6h2 + b3)× x1 × f ′(w1x1 + w2x2 + b1)

BACKPROPAGATION The system of computing the partial derivatives by working backwards.
Backpropagation in this form was derived by Stuart Dreyfus in 1962.
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Machine learning pipeline (credit: Spark - The Definitive Guide)
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Machine Learning

Confusion matrix for binary classification task (credit: Towards Data Science)
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PREDICTED
positive negative

TRUE
positive TP FN
negative FP TN

TP Correctly assigns positive class membership

TN Correctly rejects class membership

FP Fail to rejects class membership (Type I error)

FN Rejects class membership incorrectly (Type II error)

Prediction Accuracy (ACC): TP+TN
TP+TN+FP+FN

Precision (P) = TP
TP+FP

Recall (R) = TP
TP+FN
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Confusion matrix for binary classification task (credit: Towards Data Science)

Prediction Accuracy (ACC): TP+TN
TP+TN+FP+FN

= 3+4
3+4+2+1

= 0.7

Precision (P) = TP
TP+FP

= 3
3+2

= 0.6

Recall (R) = TP
TP+FN

= 3
3+1

= 0.75
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← relevant objects (e.g., cat, ham)

→ irrelevant objects (e.g., dog, spam)

objects classified with relevant class
label

ERROR

CORRECT

Precision: fraction of retrieved instances that are relevant

P =
TP

TP + FP

Recall: fraction of relevant instances that are retrieved

R =
TP

TP + FN

P and R are inversely related. Identify balance through a Precision-Recall curve.
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Statistics
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Impossibility results in AI

“Suppose we want to determine the risk that a person is a carrier for a disease Y, and suppose that a
higher fraction of women than men are carriers. Then our results imply that in any test designed to
estimate the probability that someone is a carrier of Y, at least one of the following undesirable
properties must hold: (a) the test’s probability estimates are systematically skewed upward or
downward for at least one gender; or (b) the test assigns a higher average risk estimate to healthy
people (non-carriers) in one gender than the other; or (c) the test assigns a higher average risk
estimate to carriers of the disease in one gender than the other. The point is that this trade-off
among (a), (b), and (c) is not a fact about medicine; it is simply a fact about risk estimates when the
base rates differ between two groups”[1]

Assume differing base rates, Pra(Y = 1) ̸= Prb(Y = 1), and an imperfect learning algorithm, C ̸= Y ,
then you cannot simultaneously achieve:

Precision parity Pra(Y = 1 | C = 1) = Prb(Y = 1 | C = 1)

True positive parity Pra(C = 1 | Y = 1) = Prb(C = 1 | Y = 1)

False positive parity Pra(C = 1 | Y = 0) = Prb(C = 1 | Y = 0)
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Ethical issues in ML

unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots
top nine ethical issues identified by J. Bossmann.
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

“the threat of automation & the future of work”
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

if end of work, then “shared prosperity” or “increasing inequality”
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

AI altering human behaviors and interactions, ex. fake news, click-baiting
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

adversarial ML that exploits stupidity
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

unintended consequences due to poorly defined tasks or faulty experience/data
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

the possibility of a super-intelligence emerging for AI
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

weaponization of AI in both physical and cyberspace
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

when is a robot a moral agent?
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unemployment artificial stupidity security
wealth inequality evil genies robot rights

humanity singularity racist/sexist robots

fairness, accountability, and transparency for AI regarding biases
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racially biased COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) risk
scores (credit: ProPublica)

assessment tool correctly predicts subsequent offense in 0.61 cases, BUT the accuracy is not

uniform for whites and african americans

class white african american
high risk & not re-offend .24 .45
low risk & re-offend .48 .28

P (low|white) > P (low|black) & P (high|white) < P (high|black)
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“fairness” is probabilistically defined as parity

- many parity definitions: demographic, accuracy, true positive,
predictive value, precision, ...

- Fairness and machine learning – Limitations and Opportunities

- Decisions should be in some sense probabilistically independent of
sensitive features values (such as gender, race)

ensure that common measures of predictive performance are equal across all classes
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Impossibility results revisited
X is a dataset that contains features on an individuals (e.g., income level, age)

–X incorporates all sorts of measurement biases
A is a sensitive attribute (e.g., ethnicity, religion, gender)

–A is often unknown, ill-defined, misreported, or inferred
Y is the true outcome (i.e., ground truth, e.g., survival)
C is an ML algorithm that usesX andA to predict the value of Y (e.g., whether a passenger survives)

– the sensitive attributeA divides the population into two groups a (e.g., male) and b (e.g., female)
– the ML algorithmC outputs 0 (e.g.. predicts dead) and 1 (e.g, predicts survive)
– the true outcome Y is 0 (e.g., dead) and 1 (e.g., survive)

then you cannot simultaneously achieve,

Pra(Y = 1 | C = 1) = Prb(Y = 1 | C = 1)

Pra(C = 1 | Y = 1) = Prb(C = 1 | Y = 1)

Pra(C = 1 | Y = 0) = Prb(C = 1 | Y = 0)

or, precision parity and equalized odds are not simultaneously possible
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How to achieve parity?
The trade-off among P, TP and FP is simply a fact about risk estimates when the base rates differ between two or more groups!

Simple models allow for fine-grained control on the degree of fairness, often at a small cost in terms of accuracy

Demographic Parity, also called Independence, Statistical Parity, is one of the most well-known criteria for fairness.

C is independent ofA if Pra(C = c) = Prb(C = c)∀c ∈ {0, 1}
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Solutions

LIME, an algorithm that can explain the predictions of any classifier or regressor in a faithful way, by approximating it locally with an
interpretable model

Technical
- proprocessing the data to make it less biased
- learn fair representations that encode data while obfuscating sensitive attributes
- penalize the algorithm to encourage it to learn fairly
- allow the sensitive attributes during training, but not during inference time
- causal inference

Policy
- regulations (e.g., GDPR)
- laws that grant users the right to a logical explanation of how an algorithm uses our personal data
- explainability at the level of predictive performance
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preexisting
originates in social institutions, practices, and attitudes→ computer systems embody biases that
exist independently, and usually prior to the creation of the system

technical
product of technical constraints or consideration due to limitations of computer tools (e.g.,
databases, hardware), decontextualized algorithms, random number generation, and
formalization of human constructs

emergent
arises in a context of use with real users as a result of changing societal knowledge, population, or
cultural values (e.g., new societal knowledge, mismatch between user and system design)

“We conclude by suggesting that freedom from bias should be counted among the select set of
criteria – including reliability, accuracy, and efficiency – according to which the quality of systems
in use in society should be judged” (Friedman & Nissenbaum)
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1 if questions:
2 try:
3 answer()
4 except RunTimeError:
5 pass
6 else:
7 print('THANKS')

THANKS

kln@cas.au.dk
chc.au.dk

knielbo.github.io

SLIDES

knielbo.github.io/files/kln_<fname>.pdf
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