Bizzoni, Y., Feldkamp, P., Lassen, I. M. S., Thomsen, M. R. & Nielbo, K. L. (2024).
A Matter of Perspective: Building a Multi-Perspective Annotated Dataset for the Study of Literary Quality. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti & N. Xue (Eds.),
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 789-800). European Language Resources Association (ELRA).
https://aclanthology.org/2024.lrec-main.71
Feldkamp, P., Kostkan, J., Overgaard, E., Jacobsen, M. & Bizzoni, Y. (2024).
Comparing Tools for Sentiment Analysis of Danish Literature from Hymns to Fairy Tales: Low-Resource Language and Domain Challenges. In O. De Clercq, V. Barriere, J. Barnes, R. Klinger, J. Sedoc & S. Tafreshi (Eds.),
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, Social Media Analysis (pp. 186-199). Association for Computational Linguistics.
https://aclanthology.org/2024.wassa-1.15
Bernstorff, M., Hansen, L., Enevoldsen, K., Damgaard, J.
, Hæstrup, F., Perfalk, E., Danielsen, A. A. & Østergaard, S. D. (Accepted/In press).
Development and validation of a machine learning model for prediction of type 2 diabetes in patients with mental illness.
Acta Psychiatrica Scandinavica.
https://doi.org/10.1111/acps.13687
Öhman, E.
, Bizzoni, Y., Moreira, P. F. & Nielbo, K. L. (2024).
EmotionArcs: Emotion Arcs for 9,000 Literary Texts. In Y. Bizzoni, S. Degaetano-Ortlieb, A. Kazantseva & S. Szpakowicz (Eds.),
Proceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2024) (pp. 51–66). Association for Computational Linguistics.
https://aclanthology.org/2024.latechclfl-1.7.pdf
Lassen, I. M. S., Kristensen-McLachlan, R. D., Almasi, M.
, Enevoldsen, K. & Nielbo, K. L. (2024).
Epistemic consequences of unfair tools.
Digital Scholarship in the Humanities,
39(1), 198–214.
https://doi.org/10.1093/llc/fqad091
Gao, J., Wang, F., Liu, B., Liu, F.
& Nielbo, K. L. (2024).
Fundamental limits to economic development in developing and underdeveloped countries imposed by global hierarchy.
Structural Change and Economic Dynamics,
68, 298-312.
https://doi.org/10.1016/j.strueco.2023.11.001
Rasmussen, K. S. G., Baunvig, K. F., Vad, K., Tafdrup, J. & Ravn, K. S. (2024).
One Edition – Multiple Interfaces: Dissemination and Preservation of Sustainable Digital Scholarly Editions. Abstract from Open Up Digital Editions, Zürich, Switzerland.
https://doi.org/10.5281/zenodo.10400571
Wu, Y.
, Bizzoni, Y., Moreira, P. F. & Nielbo, K. L. (2024).
Perplexing Canon: Astudy on GPT-based perplexity for canonical and non-canonical literary works. In Y. Bizzoni, S. Degaetano-Ortlieb, A. Kazantseva & S. Szpakowicz (Eds.),
Proceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2024) (pp. 172–184). Association for Computational Linguistics.
https://aclanthology.org/2024.latechclfl-1.16.pdf
Nielbo, K. L., Karsdorp, F., Wevers, M.
, Lassche, A., Baglini, R. B., Kestemont, M. & Tahmasebi, N. (2024).
Quantitative text analysis.
Nature Reviews Methods Primers,
4(25), Article 25.
https://doi.org/10.1038/s43586-024-00302-w
Kardos, M., Kostkan, J., Vermillet, A.-Q., Nielbo, K., Enevoldsen, K. & Rocca, R. (2024).
S3 – Semantic Signal Separation.
Lindhardt Overgaard, E., Feldkamp, P. & Bizzoni, Y. (2024).
Towards a GoldenHymns Dataset for Studying Diachronic Trends in 19th Century Danish Religious Hymns. In N. Tahmasebi, S. Montariol, A. Kutuzov, D. Alfter, F. Periti, P. Cassotti & N. Huebscher (Eds.),
Proceedings of the 5th Workshop on Computational Approaches to Historical Language Change (pp. 55-61). Association for Computational Linguistics.
https://aclanthology.org/2024.lchange-1.6